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Abstract--The generalized lagging behavior in solids under high-rate heating is derived by precise cor- 
relation with the hyperbolic two-step model. The ballistic behavior of heat transport in the electron gas is 
found to be captured by the second-order effect of the phase lag of the heat flux vector. In contrast to the 
parabolic two-step model, the ballistic behavior results in a sharp wavefront in the history of heat 
propagation. The analytical expression for the thermal wave speed is derived. In comparison with the 
classical diffusion and the wave models, the two phase lags in the lagging response result in a much deeper 

tlhermal penetration depth and much higher temperature in the heat-affected zone. 

INTRODUCTION 

Research of high-rate heating on thin film structures 
has rapidly grown in recent years because of the 
advancement of short-pulse laser technologies and 
their applications to modern microfabrication tech- 
nologies [1-5], To date, the laser pulse can be shor- 
tened to the range: of femtoseconds (10 -15 s) [6-9], 
making controls of the penetration depth and the pro- 
cessing time of the material more effective and accu- 
rate. Complexity of this type of problem lies in (i) the 
non-equilibrium thermodynamic transition associated 
with shortening of the response time; (ii) the acti- 
vation of microstructural effects due to the small pen- 
etration depth of the heat-affected zone or the thinness 
of the thin-film ,;tructures. For  most engineering 
materials, these two factors merge. When the response 
time in metal films reduces to the range of pico- 
seconds, it becomes comparable to the thermalization 
time (the time needed for the electron gas and the 
metal lattice to acl~ieve thermodynamic equilibrium) 
and the relaxation time (the characteristic time for the 
activation of the ballistic behavior in the electron gas) 
in the phonon-electron system [10, 11]. The effect 
of phonon--electron interactions in this time-frame, 
therefore, needs to be incorporated in the heat transfer 
model and the formulation becomes microscopic in 
nature. Heat transport in dielectric crystals is another 
example [12]. I f  the response time is of the same order 
of magnitude as the relaxation time of the Umklapp 
process (the characteristic time in which momentum 
is non-conserving :in phonon collisions, 10 -1° to 10 -12 
seconds), the microscopic process describing the 
phonon scattering from grain boundaries needs to 
be accommodated. The microscopic effect, therefore, 
occurs in companion with the fast-transient process 
in heat t ransport  Owing to the complexity of the 
space-time interactions, the ASME Heat Transfer 

Division has organized two national conferences [13, 
14] to identify the physical mechanisms governing the 
small-scale heat transfer in the fast-transient. The 
recent work by Tien and Chen [15], in addition, cat- 
egorizes the regime maps in conductive and radiative 
heat transfer by various length-scales on the micro- 
scopic level. 

The wave theory in heat conduction addresses the 
inertial effect in the short-time transient via a macro- 
scopic approach. The discontinuity existing at the 
thermal wavefront results in several unique features, 
including the thermal shock formation [16-19] and 
the thermal resonance phenomenon [20, 21], which 
cannot be depicted by diffusion. The review articles 
[22-25] have summarized about three hundred papers 
for an overview of past research developed in this 
direction. Despite the Cattaneo-Vernotte equation 
[26-28] in the thermal wave theory being admissible 
within the framework of the extended irreversible 
thermodynamics [29], it assumes a macroscopic 
behavior averaged over many grains. When the micro- 
structural effect becomes pronounced, as associated 
with shortening of the response time, the concept of 
macroscopic average may lose its physical support 
and the applicability of the thermal wave model 
becomes open to debate. 

From a microscopic point of view, on the other 
hand, the energy exchange between electrons and 
phonons was described by Kaganov et al [30]. The 
resulting phenomenological two-step model [31] 
describing the temperatures of the electron gas and 
the metal lattice during short-pulse laser heating of 
metals has gained support from the recent advance- 
ment of short-pulse laser technologies [6-9, 32, 33]. 
By employing ultrafast lasers, the phonon-electron 
coupling factor in the two-step model has been suc- 
cessfully measured for several metals. The original 
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NOMENCLATURE 

volumetric heat capacity of the 
electron gas and the metal lattice 
[J m -3 K-I]  

thermal wave speed [m s -~] 
electron-phonon coupling factor 
[W m-3 K 1] 

Planck constant [J s] 
Boltzmann constant [J K -  ~] 
thermal conductivity [W m-~ K ~] 
volumetric number density of atoms 
and free electrons, [m 3] 
number of terms in the series 
truncation. 
Laplace transform parameter. 
heat flux [W m -2] 
ratio of the two phase lags, rv/Zq 
volumetric heat source [W m -3] 
time [s] 
absolute temperature [K] 

vs speed of sound [m s t] 
x space variable [pro]. 

Greek symbols 
thermal diffusivity [m 2 s ~] 

fl dimensionless time 
6 dimensionless space 
0 dimensionless temperature 
r effective relaxation time based on the 

concept of effective conductivity [s] 
zx, Zq phase lags of the temperature gradient 

and the heat flux vector [s] 
09 frequency in the Fourier transform 

domain. 

Subscripts and superscripts 
0 quantities calculated at 0 K 
F quantities calculated at the Fermi 

surface. 

expression of the phonon-electron coupling factor 
depends on the electron mean free time between col- 
lisions [30]. Later, by the use of Wiedemann-Franz's  
law, it was expressed in terms of the thermal con- 
ductivity [10]. It appears to the author that the two- 
step model formulated by Anisimov et al. [31] is essen- 
tially phenomenological and was not derived on a 
rigorous basis. It was not until Qiu and Tiens' recent 
work [11] that the phonon-electron coupling was 
derived from the solution of the Boltzmann equation 
in the absence of the electrical current during laser 
heating. In contrast to the classical approach [30, 31], 
the general derivation [11] reveals the hyperbolic na- 
ture of energy transport by electrons in metals. The 
relaxation time for heat transport in the electron gas 
is of the order of femtoseconds, which is about two 
orders of magnitude smaller than the phonon-electron 
thermalization time. 

The present work emphasizes the fundamental 
structures of temperature waves depicted by the hyper- 
bolic two-step model. A single energy equation 
governing the temperature of the metal lattice will be 
derived and attention focussed on the way in which 
the thermal disturbance propagates through it. Most 
importantly, for bringing together research efforts in 
macro- and micro-scale heat transfer, I shall continue 
the development of the dual-phase-lag model [34] and 
show that the second-order effect of the phase lag of 
the heat flux vector captures the ballistic behavior of 
heat transport in the electron gas. 

THE HYPERBOLIC TWO-STEP MODEL 

Qiu and Tien [11] derived the hyperbolic two-step 
radiation heating model based on the macroscopic 
averages of the electric and heat currents carried by 

electrons in the momentum space. In the absence of 
electric current during laser heating, they arrived at 
three coupled equations describing the one-dimen- 
sional energy exchange between phonons and elec- 
trons : 

OTe Oq 
Ce Ot -- ~X G ( T e - T O + S  (la) 

0TI 
C~ ~ [  = G(T~- T,) (lb) 

gq ~T~ 
rv~f  + K ~ -  x + q  = 0. (lc) 

In equation (lc), the value of zv has been assumed 
small and the second-order terms and higher are neg- 
lected [1 l]. For  metals, the externally supplied pho- 
tons (the source term S) first increase the temperature 
of the electron gas as represented by equation (la). 
Through the phonon-electron interactions, i.e. the 
second step, the hot electron gas heats up the metal 
lattice as represented by equation (lb).  Equation (lc) 
describes the way in which heat propagates through 
the electron gas, i.e. the constitutive equation. The 
distinguishing feature between this and the Cattaneo- 
Vernotte equation for macroscopic thermal waves, 
however, is that energy transport depicted by equation 
(1) is for electrons on the microscopic scale and the 
thermal conductivity (K) in the phonon-electron sys- 
tem may depend on the temperature of the electron 
gas as well. The quantity zv is the relaxation time 
evaluated at the Fermi surface : 

"rv= (2 )4 /3A- ' (~ )Eo  E3/2 (2) 

where E0 is the Fermi energy of electrons at 0 K, To 
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is the Debye temperature and A is a constant defined 
as 

3r~2P:(m12)li2( 3 "~li3 

A - MkTD \4~A) (3) 

with P standing for the transient matrix element, m 
the effective mass of electrons, M the atomic mass, TD 
the Debye temperature, k the Boltzmann constant and 
A the averaged volume of the unit cell [11]. The energy 
exchange between phonons and electrons is char- 
acterized by the coupling factor G [10] : 

7z4(nev~k) 2 
G - (4)  

K 

It depends on the number density of free electrons per 
unit volume n~, the Boltzmann constant k and the 
speed of sound vs : 

k 
Vs = 2~h (67r2na)-1,,3 TD. (5) 

The phonon-electron coupling factor, through the 
speed of sound, further depends on the Planck con- 
stant (h), the atomic number density per unit volume 
(G) and the Debye temperature (TD). The s-band 
approximation [10] provides an accurate estimate for 
the number density of free electrons in pure metals. 
The volumetric heat capacities of the electron gas and 
the metal lattice, C0 and G in equation 1 (a) are, respec- 
tively, functions of' the electron temperature (Te) and 
the lattice temperature (T~). Qiu and Tien [11] numeri- 
cally solved equation (1) by considering a specific laser 
heating source (S(x, t)) with the laser wavelength in 
the visible light range. The film thickness is 0.1 #m 
and the laser-pulse duration is 96 fs. The predicted 
temperature change of the electron gas established in 
picoseconds agrees very well with the experimental 
data. The classical diffusion and the thermal wave 
models, because of the absence of modeling the micro- 
structural effect in the short-time transient, predicted 
a reversed trend for the surface reflectivity at the rear 
surface of the thin film. The analysis supports the 
validity of the hyperbolic two-step model well when 
used for describing the heat transfer mechanisms dur- 
ing short-pulse laser heating of metals. 

In exploring the, wave structure of temperatures in 
equation (1), attention is focussed on the metal-lattice 
temperature, T~, because it is a macroscopic quantity 
of  major interest to practicing engineers. Since the 
temperature-dependent properties, such as the volu- 
metric heat capacity of the electron gas, only affect 
the quantitative behavior of the temperature waves 
while the fundamental behavior remains the same, it 
will be assumed that all the thermal properties remain 
constant at this initial stage of exploration. Bearing 
this in mind, proceed to eliminate the electron tem- 
perature, T~, from equation (1). I first differentiate 
equation (la) with respect to t and equation (lc) with 
respect to x. I then combine equation (la)  with the 
results to eliminate the term of OZq/~x ~t, rendering 

~x ~ + S+TF ~ i -  +CoTF Ot ~ 

a 
+ G ( T c - T , ) + Z F G ~ t ( T e - T  O. (6) 

The quantities Tc and T o -  T~ in this equation can be 
related to the lattice temperature by equation (lb) : 

G ~TI Cl ~Tt 
T~ = TI + -(7 ?~-' consequently Te - Ti = G- ~-t" 

(7) 

Substituting equation (7) into (6), one obtains 

1 

_~ ('F (C~-~ CI) CeCIX~ o2T {ICe-I-CIXOT 

where T -= T~, the subscript '1' in T~ has been neglected 
for the sake of convenience. In the case of zv = 0, i.e. 
no ballistic behavior of heat transport in the electron 
gas, equation (8) reduces to the parabolic two-step 
equation [34]. The mixed-derivative term involving 
the second-order derivative in space and the first-order 
derivative in time> (~3T/Ox20t), is a special feature in 
both the parabolic and the hyperbolic two-step 
models. In the presence of  rv, most importantly: (i) 
the time-derivative in the energy equation is raised 
to the third order; (ii) an apparent heat source term 
containing the time-derivative of the real heat source 
applied to the body, (~S/Ot), exists. While the third- 
order time-derivative intrinsically alters the fun- 
damental structure of the temperature solution, the 
apparent heating in equation (8) resembles that in the 
classical thermal wave model [16-22, 35]. 

Along with the relaxation time of the electron gas 
(rv), the phonon-electron coupling factor G is the 
most important factor characterizing equation (8). In 
the case that rv approaches zero and G approaches 
infinity, implying that either the number density of 
free electrons (ne) approaches infinity (refer to equa- 
tion (4)) or the speed of sound approaches infinity (the 
atomic number density per unit volume n~ approaches 
zero according to equation (5)), equation (8) reduces 
to the classical diffusion equation. The Fourier law, 
leading to the diffusion equation, thus follows from 
these assumptions. 

THE DUAL-PHASE-LAG CONCEPT 

Equation (8) governing the lattice temperature 
brings in a new type of equation in conductive heat 
transfer. It includes both the microstructural effects 
(all the terms containing G) and the fast-transient 
response (all the terms containing %). From a math- 
ematical point of view, the third-order mixed-deriva- 
tive term and the third-order time-derivative term dis- 



3234 DA YU TZOU 

tinguish equation (8) from the diffusion and the 
classical thermal wave equations. 

Derivation of equation (1), and hence the combined 
equation (8), requires profound knowledge of quan- 
tum mechanics and the elastic and inelastic phonon-  
electron scattering processes in energy transport [10, 
11]. The Boltzmann transport equation governing the 
distribution function of electrons and the redis- 
tribution of electrons among energy states during elec- 
tron-lattice scattering, for example, may not be fami- 
liar to practicing engineers. In order to involve as 
many practicing engineers as possible in the rapid 
growth of microscale heat transfer, an equivalent for- 
mulation employing a macroscopic approach may be 
helpful. The macroscopic formulation is more familiar 
to practicing engineers, making it possible to extend 
their existing knowledge for the continuous devel- 
opment. 

Including the phonon-electron interactions in 
metal films and pure phonon scattering in dielectric 
media, any physical process needs afinite time to take 
place. Like the previous study [34], these interactions 
on the microscopic level are viewed as retarding sources 
causing a delayed response on the macroscopic scale. 
Mathematically, this concept is illustrated by con- 
sidering the following one-dimensional constitutive 
equation : 

q(x, t + T,q) = - -  K 0 T(x, t + ZT) 
Ox (9) 

This equation shows that the heat flux and the tem- 
perature gradient occur in a sequence of time. For  
zv > Zq, heat first flows through a material volume 
located at x at time t + Zq. Microstructural interactions 
such as scattering of phonons by the lattice, the tem- 
perature gradient, as a result of heat flow at time t + Zq, 
establishes across the same material volume at a later 
time t + rx. The physical time t is the instant at which 
physical observation on heat transport is made. Con- 
servation of energy thus applies : 

8q(x, t) ST(x, t) 
Ox +S(x , t )  = Co Ot (10) 

Equations (9) and (10) provides a set of delayed 
differential equations for determining the heat flux 
q(x, t) and temperature T(x, t). Just like the thermal 
conductivity and diffusivity, the two phase lags zx and 
Zq are two additional intrinsic thermal properties of 
the medium. Aiming at an equivalent formulation to 
equation (8), assume small values of zv and Zq so that 
(i) the second-order terms in zv and (ii) the third-order 
terms in rq and subsequent terms are negligible. The 
Taylor series expansion of equation (9) with respect 
to t then yields : 

Zq 2 c~:q 
q(x, t) + "~q (X, t) + --f ~t 2 (X, t) "" 

. . fST(x,  t) 0 2 T(x, t)~ 
) 

Eliminating the heat flux q from equations (10) and 
(1 l) gives 

02T - - | ~ 3 T  1 [ aS z 2 a 2 S ~ _  1 ~ r  

Ox 2 +'~T&2&+~:\S+~"Ti + Y  at2J ~ at 

+ ~ 82T+ rz S s r  (12) 

~ 2e 8t 3 " 

z induces an The second-order expansion of zq 
additional heat-source term, the second-order deriva- 
tive in time, in the apparent heating. Because the heat 
source term does not affect the fundamental structure 
of the solution, the source terms in both equation (8) 
(the microscopic hyperbolic two-step model) and (12) 
(the macroscopic dual-phase-lag model) will be dropped 
when establishing their correlation. For  S = 0, clearly, 
equation (8) and (12) are identical. Equating the cor- 
responding coefficients, I have 

K Ct 
e --  Ce..~_ CI , r T = ~ -  ( 1 3 a )  

-gq ~'F (Ce --~- Ci)  C e C  1 
- -  + (13b) 

e K KG 

~ /CeCA 
= (~G-)ZF.  (13c) 2~ 

Equation (13a) expresses the macroscopic properties, 
e and rx, in the dual-phase-lag model in terms of the 
microscopic properties, G, Co and C~ in the hyperbolic 
two-step model. Equations (13b) and (13c) seem to 
over-determine the remaining property %, but they 
are essentially the same within the context of the 
Taylor series expansion. To demonstrate this impor- 
tant result, ! combine equations (13a) (for e) and 
(13b) to give 

"Cq "gq 1 Z2F(C~+C,) /'C~C,'~ 
= - 2  K + 

(CeC,) 2 
+ 2KG2(Ce+CI ).  (13d) 

The first term on the right-hand side of (13d) is neg- 
ligibly small because it is of the order of z 2, refer to 
the consistent treatment in equation (lc). The third 
term on the right-hand side of equation (13d), on the 
other hand, can be arranged into the following form : 

(CoC,) 2 C~ 
z 2. (13e) 

2KG2(Ce+C,) 2K(Ce + C,) 

It is proportional to z~- which is again negligibly small 
in consistency with the Taylor series expansion used in 
equation (11). The remaining expression of equation 
(13d) is thus identical to equation (13c). Using equa- 
tion (13b) and the a-expression in (13a) gives the 
expression for the phase lag of  the heat flux vector in 
terms of the microscopic properties : 
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Table 1. Correspondence of the dual-phase-lag model to diffusion, thermal wave, heat-flux equation of Jeffreys-type, phonon- 
electron interactions (parabolic and hyperbolic) and phonon scattering field theory in terms of Zq and %. za -= the relaxation 
time in the Umklapp process ; zN =- the relaxation time in the normal process ; r ~- effective relaxation time in the Jeffreys 

model 

Heat-flux Phonon-electron Phonon-electron Phonon 
Dual-phase- Classical equation of interactions interactions scattering 

lag model Diffusion CV-wave Jeffreys type (parabolic) (hyperbolic) field 

Zq 0 ~ z 1 / 1  I'X I 1 ( 1  13 1 

% 0 0 kz~f Cl Cl 9 

ct a ~ K K C2'['R 
Co+C, Co+C~ 3 

t The parameter k corresponds to the ratio of %/%, the parameter R in equation (18), in the dual-phase-lag model. In 
terms of the microscopic properties, R = 1 + (C,/C¢) in correlation to the parabolic phonon-electron interaction model and 
R = (9/5)(ZN/ZR) in correlation to the phonon scattering field. 

Table 2. Equivalent thermal diffusivity (~E), phase lags ('lTq and rT) and thermal wave speed (CE). Ce = 2.1 x 104 J m -3 K 
at room temperature 

CI G CtE CE 
K (J m -3 K -l) (Wm -3 K -l) ( m2 s - l )  "~F "gT 27q (m s -~) x ~ q  

(W m 'K-1) ( × 10 6) ( × 1016) ( × 10 -4) (ps) (ps) (ps) X 10 5 (ns) 

Cu 386 3.4 4.8 1.1283 0.03 70 .833  0 . 4 6 4 8  2.7201 7.2418 
Ag 419 2.5 2.8 1.6620 0.04 89.286 0 .7838  2 . 1 9 7 9  11.4135 
Au 315 2.5 2.8 1.2495 0.04 89.286 0 . 7 8 3 8  1.9058 9.8963 
Pb 35 1.5 12.4 0.2301 0.005 12.097 0.1720 1.3718 1.9894 

Zq = r F +  ~ + (14) 

In the previous work [34], perfect correlations were 
established between the dual-phase-lag model and (i) 
the parabolic two-step model assuming a diffusion 
behavior in the electron gas and (ii) the pure phonon 
scattering field theory describing the momentum loss 
of phonon collisions in the Umklapp process. In the 
presence of a ballistic behavior in the electron trans- 
port, again, a precis;e correlation exists, equation (13a) 
for ~t and rr  and equation (14) for Zq Table 1 sum- 
marize the correlations established so far, including 
the macroscopic diffusion and thermal wave models, 
the heat-flux equatiion of Jeffreys type [23], the micro- 
scopic parabolic and hyperbolic two-step models and 
the pure phonon  scattering model. Indeed, the dual- 
phase-lag model covers a wide scale of physical 
responses in both space and time. Based on the exper- 
imental data for the heat capacities and the electron- 
phonon  coupling factors [6-9, 32, 33], I further cal- 
culate the values of rT and rq according to equations 
(13a) and (14) for copper (Cu), silver (Ag), gold (Au) 
and lead (Pb). The results are given in Table 2. The 
value of rE is taken from the work by Qiu and Tien 
[11], which affects the heat transport  process in two 
ways. It changes the value of Zq (refer to equation 
(14)) and it brings in the third-order time-derivative 
in equation (8). While the former effect alters the value 
of zq by no more than 6%, the latter effect completely 

alters the way in which heat propagates through the 
medium. For the four representative metals shown in 
Table 2, the value of ZT is approximately two orders 
of magnitude larger than that of  %. The apparent heat 
source in equation (12) (the dual-phase-lag model) 
contains an additional term, ~2S/0t2, in comparison 
with that in equation (8) (the hyperbolic two-step 

2 which is of  model). This term, however, is led by zq, 
the order of 10 -24 seconds. Contr ibut ion from this 
additional term seems to be negligibly small for the 
laser heating technology developed so far. 

THE WAVE BEHAVIOR 

Equation (12) introduces a strong wave behavior in 
heat propagation. This behavior is demonstrated by 
isolating the two third-order derivatives governing the 
fundamental  characteristics of the solution : 

a(02  
8t \ 8 x :  C:  + lower order terms = 0, 

2 ~ r r .  (15) 
with C=,~ /  z 2 

Clearly, the temperature described by equation (15) 
propagates as a wave at a finite speed of C. In terms 
of the microscopic properties in the two-step model, 
according to equations (13a) and (14), 
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C=X/ z 2 - ~ "  (16) 

The value of C approaches infinity as the relaxation 
time of electrons evaluated at the Fermi surface, ~v, 
approaches zero. The thermal wave speed represented 
by equation (16) is attributed to the ballistic behavior 
of heat transport in the electron gas. It results from a 
new-type of wave equation, equation (12) describing 
the microscale effect in both space and time, and 
should not be confused with that in the macroscopic" 
framework established by Cattaneo and Vernotte [2(~ 
281. 

THE ONE-DIMENSIONAL WAVES 

Equation (12) displays a new type of differential 
equation in conductive heat transfer. Reflected by the 
two delay times, rv and rq, in the macroscopic response 
between the heat flux and the temperature gradient, it 
combines the effect of microstructural interactions in 
the fast-transient process. I shall explore the wave 
structure behind equation (12) by considering tem- 
perature waves propagating in a semi-infinite medium. 
While the front surface is subjected to a sudden 
increase of temperature, the boundary extending to 
infinity facilitates a thorough examination of the way 
in which temperature decays and the heat affected 
zone evolves. Although the effect of apparent heating 
is interesting, it will be excluded it from this study 
because it does not contribute to the fundamental 
characteristics of the temperature waves. 

For a more systematic study, the following dimen- 
sionless parameters are introduced : 

T-To t x 
- -  6 - ( 1 7 )  

O - T w - T  o' / 3 = r q '  x / ~ 7  q 

with Tw and To, respectively, being the suddenly raised 
temperature at the front surface at x = 0 and the 
initial temperature of the medium as t = 0. In terms 
of these variables, equation (12) becomes 

020 030 80 820 1 030 rT 
06~ + R062 8/3- O/3 + ~-fiT + ~ ~ ,  withR=--.r,, 

(18) 

The boundary conditions are 

0 = 1  at 6 = 0 ,  0 ~ 0  as 6--+oo. (19) 

I need three initial conditions to formulate the effect 
of the third-order time-derivative in equation (18): 

00 020 
0 = 0 ,  ~ = 0 ,  ~ 5 = 0  as /3=0.  (20) 

Although the effect of time-rate of changes is a special 
feature in this type of problem [34, 36, 37], I assume 
zero values for 00/0/3 and 820/0/32 in order not to 
disturb the wave structure. 

The Laplace transform solution satisfying equa- 
tions (18) to (20) can be easily obtained: 

/p(2 + 2p + p:) .\ 
e x p - x /  2 ( l + ~ p )  O) 

0 = (21)  
P 

The Laplace inversion of equation (21), however, 
involves four branch points at p = 0, - l/R, (1 +i)  
and (1 - i) in the Bromwich contour integral. The final 
result can be simplified to an improper integral but a 
numerical evaluation is still unavoidable. Therefore, 
I apply the numerical inversion formula developed 
previously [34, 36] to invert equation (21): 

e ~''~ (0(6,'/) _ ,,~-lX ( _ _ 1 ) ~ 0 ( 6 , ? + ~ ) ) "  0 ( a , / 3 )  = 

(22) 

Equation (22) is actually the Riemann sum approxi- 
mation of the Fourier integral transformed from the 
Laplace inversion integral. The quantity )' is the real 
value in the Bromwich cut from 7- ioo  to 7+ic~. 
For a faster convergence, the value of 7 satisfies the 
relation 

7/3 -~ 4.7 (23) 

with /3 being the dimensionless physical time. At 
/3 = 1, for example, a value of 4.7 should be used for 
7. Other values of 7 will lead to the same solution, 
but the number of terms needed in the summation 
of equation (22), especially for problems involving 
discontinuities at the sharp wavefront, will increase 
by orders of magnitude for convergence [34, 36, 37]. 
In this work, the summation in equation (22) is per- 
formed until the Cauchy norm is smaller than or equal 
to 10 15. 

For easier identification with various other models, 
artificially include two coefficients A and B into equa- 
tion (18) : 

~20 030 ~0 ~20 ~30 
~62 +R0620/3 O/3+A~+B~-fl3.  (24) 

I • The case of A = 1 and B = 5 is equivalent to the hyper- 
bolic two-step model, equation (18). The case ofA = 1 
and B = 0 reduces to the parabolic two-step model 
where only the linear terms in rv and vu are retained 
in equation (11). The case ofA = 1, B = 0 and R = 0 
reduces to the classical thermal wave model employing 
the single-phase-lag concept (vT = 0). Finally, the case 
of A = 1, B = 0 and R = 1 (rv = rq) reduces to the 
classical diffusion model without the lagging response 
[38]. Equation (24), based on the dual-phase-lag 
concept, thus covering a wide scale of space and time 
for physical observations. 

Figure 1 shows the temperature distributions for 
R = 100 and fl = l. The dual-phase-lag model with 

I the Vq2-effect (A = 1 and B = 5, the hyperbolic two- 
step model) predicts a sharp wavefront at 
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R = 1 0 0 , 1 3 = l  
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- -  Eq. (24), A=I, B=l/2 (hyperbolic) 

~ - - - -  A=I, B=O (parabolic) 
0 . 8  \ \  - -  A=I, B=O, R=O (classical wave) 

\ Q , ~ ' - - "  A l l ,  B-0, R-1 (diffusion) 
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0.4 il \ \  i, \ 

,' ,.,). "" 0.2 \ ,..... 

0.0 . . . . . . .  
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8 
Fig. 1. Temperature distribution predicted by the dual~phase- 
lag model. Equation (24) with A = 1 and B =~ (cor- 
responding to the hyperbolic two-step model), A = 1 and 
B = 0 (the parabolic two-step model), A = 1, B = 0 and 
R = 0 (the classical thermal wave model) and A = 1, B = 0 

and R =: 1 (the diffusion model). 

6 = x / ~ f l - ~ 1 4 . 1 4 2 1 4 .  This is the most dis- 
tinguishable effect from the ballistic behavior of  heat 
transport in electrons (the rqZ-effect), even more so 
than the value of  rq being slightly modified by the 
relaxation time vv. The classical thermal wave model  
to diffusion, in large, is what the hyperbolic two-step 
model is to the parabolic two-step model. The effect 
of  microstructural interactions absorbed in the phase 
lag of  the temperature gradient, rT, however, induces 
a much larger heat-affected zone and much higher tem- 
perature level in the heat-affected zone. They are 
major reasons leading to the successful prediction of  
the sub-picosecond surface reflectivity in gold films 
[10]. Figure 2 displays the effect of  the ratio of  r t  
to rq on the propagation of  temperature waves. The 
location of  the thermal wavefront,  to be reiterated, is 
at 6 = x / ~ f l  under various values of  R. At the same 
instant of  time, the thermal penetration depth into the 

[3=1 
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: i 1 I 
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8 
Fig. 2. Evolution of temperature waves described by equation 
(18) with the ratio o1' R = "cs/'rq. The thermal wave front is 

located at 6 = ~ R f l .  

solid increases with the ratio of  R in a square-root 
sense• This is also the effect of  microstructural inter- 
actions because the ratio R is proport ional  to zx. The 
effect of  fast-transients is absorbed in % It provides a 
counter-balanced effect with regard to the thermal 
penetration depth. Figure 3 displays the time-history 
of  temperature waves at fl = 1, 2, 3 and 4 (the instant 
of  time beyond which the sharp thermal wavefront 
vanishes). For  responses at longer times, evidenced 
by the distributions of  R = 10 as 3 = 3 and 4, the 
temperature levels off when approaching the sharp 
wavefront. It then drops to zero in the thermal undis- 
turbed zone. This is a unique behavior pertinent to 
the effect o f t  2 (the ballistic behavior in electron trans- 
port from a microscopic point of  view) and is not 
found in the macroscopic thermal wave theory. 

F rom a consistent mathematical  point of  view, the 
second-order expansions in ~v and zq should also 
involve a second-order time-derivative in r 2 on the 
right-hand side of  equation (11): 

8q z 2 02q 
q(x, t) + Zq N (x, t) + ~ ~t 2 (x, t) ~- 

K(OT(x't) 02T(x't) t2 03T(x'Q~ (25) 

- \-U#-x + OxO  + 2 OxO: ] 

The new t2-effect induces an additional fourth-order 
derivative in equation (12), resulting in an equation 
of  parabolic type again• In absence of  the heating 
terms, equation (12) becomes 

02T 03T "c~ 04T 1 0T 

OX 2 -}-ZX Ox2 0t'+ 2 OX2 8t 2 ct Ot 

tq 82T Z 2 83T (26) 

Its dimensionless form corresponding to equation (18) 
is 

8 2 0  0 3 0  R 2 0 4 0  0 0  8 2 0  

1 030 zx 
+ ~ 7 ~ , ,  with R = - - .  (27) 

U/S ~ Tq 

The fourth-order derivative characterizes the fun- 
damental  structure of  equation (27). It gives a para- 
bolic nature to equation (27) and diminishes the wave 
behavior argued in equation (15). Under  the same 
initial and boundary conditions given in equation (19) 
and (20), Fig. 4 displays the solutions of  equation (18) 
(the effect of  z 2 alone) and equation (27) (both effects 
of  z 2 and Zq2). Exemplified by the case of/3 = I and 
R = 150, the effect o f t  2 not  only diminishes the sharp 
wavefront, but also extends the heat-affected zone 
deeper into the medium• 

In passing, note that the observation time and 
physical space have been normalized with respect to 
the relation time Zq and the equivalent length-scale 
l = x ~ q .  For  metals, these variables imply the real 
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Fig. 3. Time-history of the temperature waves described by equation (18) at various values of R. fl = 1, 2, 

3 and 4. 

scales of picoseconds in time and nanometers in space 
for the response curves shown in Figs. 1-4. 

C O N C L U S I O N  

A macroscopic dual-phase-lag model is proposed in 
this work to incorporate the effect of microstructural 
interactions in the fast-transient process of heat trans- 
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Fig. 4. Diminution of the sharp wavefront by the T~-effect. 

Comparison of equations (18) and (27). 

port. The unique feature lies in viewing the presence 
of microstructural interactions as r e t a r d i n g  s o u r c e s  

causing a macroscopic d e l a y e d  response in time. Pre- 
liminary success of this approach is measured by its 
precise correlation with the existing microscopic (both 
the hyperbolic and parabolic two-step and the pure 
phonon scattering) and macroscopic (diffusion and 
wave) models. The generalized lagging response 
described in the framework of the two phase lags 
evidently covers a wide scale of space and time for 
physical observations. As a result, there is no need to 
switch from one model (such as diffusion or wave) to 
another (such as phonon-electron interaction or pure 
phonon scattering) associated with shortening of the 
response time. Because of the absence of a quantitative 
criterion depicting the applicable regimes of these 
models, the model-switching not only heavily relies 
on experience but also risks the loss of important 
information describing the way(s) in which a certain 
macroscopic behavior transits into a microscopic 
response in the time-frame. The proposed dual-phase- 
lag concept seems able to remove this ambiguity. Most 
importantly, it adopts a macroscopic approach already 
familiar to practicing engineers. It thus facilitates a 
smoother transition in describing heat transport from 
a macroscopic to a microscopic level. 

Within the framework of the dual-phase-lag model, 



Generalized lagging response 3239 

the effect of  microstructural interactions is largely 
absorbed in the phase lag of  the temperature gradient 
(zT) while the effect of  fast-transients is absorbed in 
the phase lag of  the hea t f l ux  vector  ('rq). The effect of  
Zq is mainly responsible for the presence of  a sharp 
wavefront in heat propagation,  as reflected by the 
cases of  ZT = 0 (the classical thermal waves) and the 
z2-effect in equation (18) (the ballistic behavior of  
heat transport in electrons). The effect of  zT, on the 
other hand, diminishes the sharp wavefront and 
extends the heat-affected zone deeper into the solid 
medium. When the microstructural effect (the zr- 
effect) is present in heat transport,  the distribution 
curve of  temperatures displays a monotonically decay- 
ing behavior similar to diffusion. The temperature 
level and the physical dimension of  the heat-affected 
zone, however, are much larger than those predicted 
by the diffusion model  assuming an instantaneous 
response and a qu~tsi-equilibrium transition between 
thermodynamic states. Because the effect of  ZT induces 
higher order derivatives in time, in addition, equation 
(14) allows specifications of  the time-rate of  changes 
of  temperature, ~7-/at and 02T/~t z in the initial con- 
ditions. As shown by Tzou [34] for the correlation 
with the parabolic two-step model, such a rate-effect 
will intrinsically alter the temperature distributions. 

The perfect correlations made with the microscopic 
models shown in Table I determine the precise values 
of  the two phase lags in the range of  pico- to femto- 
seconds. For  transient processes occurring in sub- 
microseconds, such as those in reticulated metallic 
structures or some composites with insulator-like 
materials as the second phase constituents, the two 
phase lags have to be determined by the transient- 
time experiments incorporated with the microscopic 
support for the governing mechanisms. 

The transient experiment on the medium blasting 
sand has had to be performed with the cooperat ion of  
colleagues and details are given in ref. [38]. The par- 
ticle size in this medium ranges from dust to 2 mm, 
having a mean value of  0.2 mm. The delayed response 
in this case is due 1:o the f ini te  time required for the 
heat flow to circulate around pores. Comparing with 
the experimental result, the classical wave model  may 
overestimate the pe~,k value of  transient temperatures 
by as much as 100%, depending on the pulse-width 
and the location from the heater. The dual-phase-lag 
model, on the othe, r hand, accurately describes the 
entire transient response. The two phase lags, "t'q and 
ZT respectively, have: been found to be 4.48 s and 8.94 
s at a distance of  (1.4 mm (twice the mean-particle- 
size) from the heater. These values, however, degrade 
non-homogeneously in a direction away from the 
heater because of  the gradient of the discrete struc- 
tures. 
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